Package: ModelMetrics 1.2.3

ModelMetrics: Rapid Calculation of Model Metrics

Collection of metrics for evaluating models written in C++ using 'Rcpp'. Popular metrics include area under the curve, log loss, root mean square error, etc.

Authors:Tyler Hunt [aut, cre]

ModelMetrics_1.2.3.tar.gz
ModelMetrics_1.2.3.zip(r-4.5)ModelMetrics_1.2.3.zip(r-4.4)ModelMetrics_1.2.3.zip(r-4.3)
ModelMetrics_1.2.3.tgz(r-4.4-x86_64)ModelMetrics_1.2.3.tgz(r-4.4-arm64)ModelMetrics_1.2.3.tgz(r-4.3-x86_64)ModelMetrics_1.2.3.tgz(r-4.3-arm64)
ModelMetrics_1.2.3.tar.gz(r-4.5-noble)ModelMetrics_1.2.3.tar.gz(r-4.4-noble)
ModelMetrics.pdf |ModelMetrics.html
ModelMetrics/json (API)
NEWS

# Install 'ModelMetrics' in R:
install.packages('ModelMetrics', repos = c('https://jackstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jackstat/modelmetrics/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

aucloglossmachine-learningmetricsmodel-evaluationmodel-metrics

11.83 score 29 stars 291 packages 1.3k scripts 106k downloads 2 mentions 25 exports 2 dependencies

Last updated 3 years agofrom:3da8b8452d. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-win-x86_64OKNov 08 2024
R-4.5-linux-x86_64OKNov 08 2024
R-4.4-win-x86_64OKNov 08 2024
R-4.4-mac-x86_64OKNov 08 2024
R-4.4-mac-aarch64OKNov 08 2024
R-4.3-win-x86_64OKNov 08 2024
R-4.3-mac-x86_64OKNov 08 2024
R-4.3-mac-aarch64OKNov 08 2024

Exports:aucbrierceconfusionMatrixf1ScorefScoreginikappalogLossmaemaucmccmlogLossmsemslenpvppvprecisionrecallrmsermslesensitivityspecificitytnrtpr

Dependencies:data.tableRcpp

Readme and manuals

Help Manual

Help pageTopics
Area Under the Curveauc auc.default auc.gbm auc.glm auc.glmerMod auc.randomForest auc.rpart
Brier Scorebrier brier.default brier.gbm brier.glm brier.glmerMod brier.randomForest brier.rpart
Classification errorce ce.default ce.gbm ce.glm ce.glmerMod ce.lm ce.randomForest ce.rpart
Confusion MatrixconfusionMatrix
F1 Scoref1Score
F ScorefScore
GINI Coefficientgini gini.default gini.gbm gini.glm gini.glmerMod gini.randomForest gini.rpart
kappa statistickappa
Log LosslogLoss logLoss.default logLoss.gbm logLoss.glm logLoss.glmerMod logLoss.randomForest logLoss.rpart
Mean absolute errormae mae.default mae.gbm mae.glm mae.glmerMod mae.randomForest mae.rpart
Multiclass Area Under the Curvemauc
Matthews Correlation Coefficientmcc
Multiclass Log LossmlogLoss
Mean Square Errormse mse.default mse.glm mse.lm
Mean Squared Log Errormsle msle.default msle.gbm msle.glm msle.glmerMod msle.lm msle.randomForest msle.rpart
Negative Predictive Valuenpv
Positive Predictive Valueppv precision
Recall, Sensitivity, tprrecall sensitivity tpr
Root-Mean Square Errorrmse rmse.default rmse.glm rmse.lm
Root Mean Squared Log Errorrmsle rmsle.default rmsle.gbm rmsle.glm rmsle.glmerMod rmsle.lm rmsle.randomForest rmsle.rpart
Test datatestDF
Specificity, True negative ratespecificity tnr