Package: ModelMetrics 1.2.3
ModelMetrics: Rapid Calculation of Model Metrics
Collection of metrics for evaluating models written in C++ using 'Rcpp'. Popular metrics include area under the curve, log loss, root mean square error, etc.
Authors:
ModelMetrics_1.2.3.tar.gz
ModelMetrics_1.2.3.zip(r-4.5)ModelMetrics_1.2.3.zip(r-4.4)ModelMetrics_1.2.3.zip(r-4.3)
ModelMetrics_1.2.3.tgz(r-4.4-x86_64)ModelMetrics_1.2.3.tgz(r-4.4-arm64)ModelMetrics_1.2.3.tgz(r-4.3-x86_64)ModelMetrics_1.2.3.tgz(r-4.3-arm64)
ModelMetrics_1.2.3.tar.gz(r-4.5-noble)ModelMetrics_1.2.3.tar.gz(r-4.4-noble)
ModelMetrics.pdf |ModelMetrics.html✨
ModelMetrics/json (API)
NEWS
# Install 'ModelMetrics' in R: |
install.packages('ModelMetrics', repos = c('https://jackstat.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jackstat/modelmetrics/issues
- testDF - Test data
aucloglossmachine-learningmetricsmodel-evaluationmodel-metrics
Last updated 3 years agofrom:3da8b8452d. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win-x86_64 | OK | Nov 08 2024 |
R-4.5-linux-x86_64 | OK | Nov 08 2024 |
R-4.4-win-x86_64 | OK | Nov 08 2024 |
R-4.4-mac-x86_64 | OK | Nov 08 2024 |
R-4.4-mac-aarch64 | OK | Nov 08 2024 |
R-4.3-win-x86_64 | OK | Nov 08 2024 |
R-4.3-mac-x86_64 | OK | Nov 08 2024 |
R-4.3-mac-aarch64 | OK | Nov 08 2024 |
Exports:aucbrierceconfusionMatrixf1ScorefScoreginikappalogLossmaemaucmccmlogLossmsemslenpvppvprecisionrecallrmsermslesensitivityspecificitytnrtpr
Dependencies:data.tableRcpp
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Area Under the Curve | auc auc.default auc.gbm auc.glm auc.glmerMod auc.randomForest auc.rpart |
Brier Score | brier brier.default brier.gbm brier.glm brier.glmerMod brier.randomForest brier.rpart |
Classification error | ce ce.default ce.gbm ce.glm ce.glmerMod ce.lm ce.randomForest ce.rpart |
Confusion Matrix | confusionMatrix |
F1 Score | f1Score |
F Score | fScore |
GINI Coefficient | gini gini.default gini.gbm gini.glm gini.glmerMod gini.randomForest gini.rpart |
kappa statistic | kappa |
Log Loss | logLoss logLoss.default logLoss.gbm logLoss.glm logLoss.glmerMod logLoss.randomForest logLoss.rpart |
Mean absolute error | mae mae.default mae.gbm mae.glm mae.glmerMod mae.randomForest mae.rpart |
Multiclass Area Under the Curve | mauc |
Matthews Correlation Coefficient | mcc |
Multiclass Log Loss | mlogLoss |
Mean Square Error | mse mse.default mse.glm mse.lm |
Mean Squared Log Error | msle msle.default msle.gbm msle.glm msle.glmerMod msle.lm msle.randomForest msle.rpart |
Negative Predictive Value | npv |
Positive Predictive Value | ppv precision |
Recall, Sensitivity, tpr | recall sensitivity tpr |
Root-Mean Square Error | rmse rmse.default rmse.glm rmse.lm |
Root Mean Squared Log Error | rmsle rmsle.default rmsle.gbm rmsle.glm rmsle.glmerMod rmsle.lm rmsle.randomForest rmsle.rpart |
Test data | testDF |
Specificity, True negative rate | specificity tnr |